Dispersal, demography and spatial population models for conservation and control management
نویسندگان
چکیده
Spatial population dynamics can seldom be ignored in management aimed at conserving or controlling plant species in a spatial context. Therefore, spatial population models, that bring together knowledge about a species’ local demography and dispersal behavior, are of growing applied importance. Here, we survey increasingly complex analytical and simulation models that are being developed to describe both demography and dispersal in applied studies. Local population dynamics can be modeled in an unstructured way, by specifying ageor stage-structure or by modeling each individual. Dispersal is often summarized in population-spread models with descriptive and simple statistical models. Mechanistic models that incorporate the physical or behavioral dynamics of dispersal vectors, however, provide more insight and can more readily be applied to novel situations. Importantly, mechanistic models provide a tool for linking variation in species traits and environments to dispersal and population spread. Spatial population models span a wide range: from diffusion models, metapopulation models, integrodifference equation models, and Neubert–Caswell models, to spatially explicit individual-based models. The complexity (and biological realism) of such models often trades off with tractability: for instance, individual-based simulation models allow for unlimited incorporation of biological detail, but rarely for analytical exploration of the model dynamics. We discuss the advantages and disadvantages of these various spatial population models; the choice of the most appropriate model will depend on the management objective, the biological complexity, available data and the principle of parsimony. We present five case studies of endangered and invasive species for which spatial population models have been developed to inform management, for instance to decrease the spread rate of invasive species or to improve the regional persistence of endangered species. We also anticipate exciting new developments in both spatial analytical and spatial simulation models with increasing demographic, dispersal and spatial sophistication. r 2007 Rübel Foundation, ETH Zürich. Published by Elsevier GmbH. All rights reserved.
منابع مشابه
The importance of realistic dispersal models in conservation planning: application of a novel modelling platform to evaluate management scenarios in an Afrotropical biodiversity hotspot
As biodiversity hotspots are often characterized by high human population densities, implementation of conservation management practices that focus only on the protection and enlargement of pristine habitats is potentially unrealistic. An alternative approach to curb species extinction risk involves improving connectivity among existing habitat patches. However, evaluation of spatially explicit...
متن کاملSpatial dynamics of invasive Carduus thistles
Managing invasive species is inherently a spatial problem, even though the application of management is local. For efficient management of invasive species, we must therefore understand their spatial population dynamics. Once key demographic and dispersal rates are studied in detail, spatial population models can be constructed and utilized to evaluate the impact of various management options. ...
متن کاملForecasting spatially structured populations: the role of dispersal and scale.
We forecasted spatially structured population models with complex dynamics, focusing on the effect of dispersal and spatial scale on the predictive capability of nonlinear forecasting (NLF). Dispersal influences NLF ability by its influence on population dynamics. For simple 2-cell models, when dispersal is small, our ability to predict abundance in subpopulations decreased and then increased w...
متن کاملConservation Genetics in the Marine Realm
Techniques for DNA and protein assay make possible genetic studies on any species. In recent years, molecular methods have been applied to a number of conservation-relevant genetic issues for marine organisms ranging from zooplankton to whales. To introduce these symposium proceedings, I will mention some of the unusual challenges and opportunities afforded by marine taxa for genetic research i...
متن کاملUsing demography and movement behavior to predict range expansion of the southern sea otter.
In addition to forecasting population growth, basic demographic data combined with movement data provide a means for predicting rates of range expansion. Quantitative models of range expansion have rarely been applied to large vertebrates, although such tools could be useful for restoration and management of many threatened but recovering populations. Using the southern sea otter (Enhydra lutri...
متن کامل